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ABSTRACT 
-% 'bq I -' 

Problems of elastic stability of a space rocket under dynamic, non- 
conservative loads are presented. The spacecraft is treated as a s lender ,  
uniform cylindrical bar with free-free ends. Analysis of the frequency of 
the t ransverse  vibration coupled with the longitudinalvibration under the action 
of time-varying thrust  force based on Galerkin's method leads to Mathieu's 
equation. The elastic stability boundaries of the frequency ratio,  longitudinal 
to t ransverse ,  versus  the thrust  are obtained. The dynamic buckling thrust 
of a uniform bar  with various boundary conditions is presented. The aero- 
dynamic force induced from the oscillation of the rocket in supersonic speed 
on the cr i t ical  thrust  is investigated. A numerical illustration is given to 
show the relationship of the cri t ical  thrust versus  flight speed at various 
flight a1 ti tude s. 
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DEFINITION O F  SYMBOLS 

Definition 

Effective load carrying cross-sectional area 

Constant, defined by equation ( 11) 

Velocity of sound in air 

Modulus of elasticity 

Bending moment of inertia 

= P / ( T ~ E I / L ~ )  
0 

Length of bar 

Mach number = U/cm 

Mass  pe r  unit length of bar 

Axial force 

Thrust force function and i t s  maximum value 

Atmospheric p r e s  s u r e  

Aerodynamic load pe r  unit length 

Radius of bar  

= e  /n, n 

Time variable 

Thrust  buildup time 

Velocity of flight 

iv 



DEFINITION OF SYMBOLS (Concluded) 

Symbol 
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W 

X 

CY 

P 

Y 

‘a 

n 8 

clll 
7 
0 

a 
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Longitudinal displacement of bar  

\ ~ ~ - - n l ; v n A  -r\an nf frnn trancxrnran xrihratinn 
L.VLU*U*LY”U A l l V U Y  V* *--1 -^---I. ---- .-.- 

Transverse displacement 

Coordinate along b a r  

K 

= I. 4, polytropy index of air 

= &yRLpm/mLcmR l, aerodynamic damping factor 

Structural  damping factor 

= nm/L ,  longitudinal frequency 

Parameter  of Mathieu equation defined by equation (23)  

= t  s2i 
0 

Natural frequency of t ransverse vibration. 

V 
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ELASTIC STABILITY O F  A SLENDER BAR WITH 
FREE-FREE ENDS UNDER DYNAMIC LOADS 

Problems of elastic st.ability of a s p c e  rocket lmder dyxn:ic, non= 
conservative loads are presented. The spacecraft is treated as a s lender ,  
uniform cylindrical bar  with free-free ends. Analysis of the frequency of 
the t ransverse vibration coupled with the longitudinal vibration under the action 
of time-varying thrust  force based on Galerkin's method leads to MatMeu's 
equation. 
to t ransverse ,  versus  the thrust  are obtained. The dynamic buckling thrust 
of a uniform bar with various boundary conditions is presented. .The aero- 
dynamic force  induced f rom the oscillation of the rocket in  supersonic speed 
on the critical thrust is investigated. A numerical illustration is given to 
show the relationship of the cri t ical  thrust versus  flight speed a t  various 
flight altitudes. 

The elastic stability boundaries of the frequency ratio,  longitudinal 

INTRODUCTION 

The means of finding the static buckling load of a slender column is the 
well known Euler's method. If the external forces  have a potential, they are 
called conservative forces ,  in which case this method is applicable. If the forces 
are nonconservative, this method is not applicable [ I]. The theory of elastic 
stability of nonconservative problems is based on the investigation of the smal l  
oscillation of the system about its equilibrium position. Thorough discussion 
and many practical examples of this so-called dynamic method may be found in 
V. V. Bolotin's books listed as References I and 2. 

The thrust  force and the aerodynamic load acting on a space vehicle have 
fixed directions relative to the vehicle and vibrate together with it when oscil- 
lation is taking place. Hence, these forces are nonconservative. Determination 
of the elastic stability of the vehicle, while disregarding the local buckling and 
panel flutter, is the object of this study. 
simply as a uniform, slender cylindrical ba r  with both ends free. A thrust force 
is applied at the tail end along the body axis;  this force is built up from zero to 
its maximum magnitude in a shor t  time interval and then is kept constant. Two 
dynamic stability problems are presented here. 

The space vehicle may be treated 



Dynamic Coupling of Longitudinal and Transverse Vibrations 

The velocity of the longitudinal stress waves traveling in a solid bar is 
equal to the speed of sound in the bar. In general, the frequency of the s t r e s s  
waves traveling back and forth in a ba r  is much greater  than its natural frequency 
of transverse vibration; thus , the coupling is negligible. 
usually has great m a s s  density pe r  length and a small  effective load-carrying 
cross-sectional area. Its longitudinal frequency may be of the same o r d e r  of 
magnitude as its transverse vibration frequency. In this case the elastic coupling 
become s significant. 

However, a rocket 

Elastic Stability of a Space Vehicle under the Combined Action 
of a Thrust and Aerodynamic Load 

For a space rocket of large cross-sectional area, the aerodynamic force 
and damping effect caused by i t s  transverse oscillation in supersonic air flow 
may have some significance to its dynamic stability. Such information may be 
helpful to structural design engineers. 

ANALYSIS 

Coupling of Longitudinal and Transverse Vibrations 

The w e l l  known equations of t ransverse and longitudinal vibrations of a 
uniform bar and its boundary conditions of free-free ends are as follows [I, 31: 

a% 
ax4 + m  at2 ax  E1 - 

au 
ax 

N(x,  t) = EA- 

= o  
x = L  



EA e) = -P(t) 
x=o 

= o  

The coupling of longitudinal vibration wi th  the t ransverse vibration as given by 
the first term on the right-hand side of equation (1) can be obtained easily with 
the aid of Figure I in which N(x, t) denotes the tensile force along the axis of 
the bar. 

W N+dN 

FIGURE 1. COORDINATE SYSTEM 

1. Solution of u(x ,  t). - To eliminate the nonhomogeneous boundary 
condition of u given by equation ( 5 ) ,  we introduce a new variable 
the solution of equation ( 3 )  i n  the f o r m  

and write 

Po ( x  - x2/2L). 
EA 

u(x,  t) =ii (x,  t) - 

From equations (5) and (61,  

(E) x = o  = (z)x=L=o. 

Substituting from equation ( 6) into equation ( 3 )  yields 

c2 = EA/m . 

(7) 

3 



NOW, if  we le t  

n m  U ( x ,  t) = $t) cos- 
L '  n=O 

which satisfies the boundary conditions given by equation ( 7 ) ,  the approximate 
solution of the unknown function Kn( t) may be determined using Galerkin's 
method. This involves substituting the assumed solution into equation ( 8 )  
and then multiplying both sides of the equation by cos  nnx/L and integrating 
f w n m  II"I11 v '1 = 0 tc! x = L. This resul ts  in 

, n = I, 2 , .  . . . e = nnc/L 2L d2P( t )  d 2 s  

d t2 n n  n2$ dt2 n 
+ 8 2 E  = - -  

-- d2Go P(t) - 
dt2 m L  

The last equation represents the rigid body motion of the vehicle. 

Equation (9 )  indicates that the solution of Ci( t) depends on the second 
derivative of the thrust  function P( t). It usually takes from one half to one 
second for a rocket engine to build up to its full power; then the thrust remains 
fairly constant until engine cutoff. The thrust  buildup curve may be represented 
by a second o rde r  curve with t as the buildup time and Po as its maximum 
thrust. Hence, let  u s  assume 0 

= P ,  t 2 t  , 
0 

from which we obtain 

where S ( t )  is a unit step function. 
is represented by Figure 2. 

The thrust  function and i t s  second derivative 

4 



FIGURE 2. THRUST FUNCTION AND ITS SECOND DERIVATIVE 

The solution of equation ( 9) may be obtained easily by using the Laplace t ransform,  

where 

s i n  8 t 
A = ( a / T  2) 4 2 ( 1 -  cos r 7 )/rn*’, 9, = tan-1 

n o  
n 0 n o  I- COS^ t 3 n o  

In study of stability problems, the initial conditions can be disregarded; hence, 
we may drop out @ f rom equation ( 13) and use  P to replace P(t) in dealing 
with the t ransverse  vibration of the bar. n 0 Thus, we have 

1 o n  C O S  e  COS - nrx  - ( x - x ~ / ~ L ) P  / E A + ~ ( P  /mL)t2 
00 2LP A 

n = l  n L 0 0 

and 
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nrx 
1 

* 2P A 
o n  

N ( x ,  t) = -  - cos 8 t sin - - ( 1  - x / L ) P o .  n r  n n =  1 

2. Solution of Transverse Vibration w(x ,  t) . -The solution of free 
vibration ( N  = 0 and q = 0) of a free-free beam is [4] 

00 

jQ.t w(x ,  t) = c v . ( x )  e 1 , i i  i -  1 

where C.  is a constant, j = fly and v . (x)  is the ith normalized vibration mode, 
1 1 

1 
V.(x) = - [ChP x + COS Pix - yi( Shp.x + s in  P.x) J . (17) 

1 dz i 1 1 

The symbols in the two equations above are defined as follows: Pi is the 
eigenvalue of the frequency equation 

COS PL Ch PL = 1; 

Q .  is the natural circular frequency of free vibration 
1 

Q: = pi4 EI/m = (piL) ( T - ~  EI/L2) /7r2mL2 ; 

and y. is a constant 
1 

ChP.L - COS P.L 
1 1 

1 1 

y. = 
1 ShP.L - s i n P . L  

The values of P .  and y. a r e  
1 1 

P.L = 4.73000, 7. 8532, 10. 996, . . . , - i ( 2 i  + 1 ) ~  
1 

y. = .  98250, 1. 00078, . 99997, . . . , = - 1 .  
1 



, 

To solve equation (1) with q ( x ,  t) = 0, we assume the solution in the form 

where f. (t) is an unknown function to be determined. Af t e r  substituting w( x ,  t) 
f rom e$wtion (20) and N(x, t) from equation ( 15) into equation ( I ) ,  multiplying 

equiitiuti by vkixj, a i d  '&en integrating with respect  to x from 0 to L, we 
obtain a system of infinite simultaneous equations: 

d2fk m 

- + ~ 2 ( 1 - a a & - 2  pn c o s 0  t ) f  
dt! k n = l  kk n k  

-Qi ( a k i + 2  p c o s 8  t ) f . = O ,  k = l , 2 ,  ... n i  
i= l  n = l  nlu 
i f k  

where 

4 K=.01972K K = P / ( ~ ; L E I / L ~ )  7? 
(Y = P /mL2n,2 = 

0 (PILI 0 

L 
a = (QJQk)'L J v [ v '  - ( L  - x)v!'I dx 

k i  1 
0 

ki 

p = -(YA ( Q ~ / Q ~ ) ~  L J + v.' cos  - nT9 L dx 
n 1 nlu 0 

nn-x dx . L2 
= - CIA ( Q ~ / Q ~ ) ~  - J v fv: s in-  

L 

n n r  k i  L 
0 

7 



The prime in the above equations denotes derivative with respect  to x. Using 
the integration formulas given by Reference 5 w e  obtain 

k f i  

The approximate formula for p may be written in the form 
n.. 11 

The above formulas give 

all = 6. 151 

aZ1 = .4783 

aI2 = -9.211 

a22 = 3. 027 

PI = PIll  = 7-15  AI = . 1423KAi . 

Because p decreases with l /n2,  l e t  u s  consider only the first mode of both 
longitudina and t ransverse vibrations. Then from equation (21)  we obtain 

Equation (25) may be rewritten in the form of the well known Mathieu equation, 

8 



d2f 
dt? 
A+- 31,2(1- 2jii COS eit) f ,  = 0 ,  

where 

- ~ 2 1 2  = Q , ~ ( I -  "ail) 1.1 = 1.1/(1 - a a i i )  . 
Applying the stability boundary for the Mathieu equation given by Reference 2 
(pp. 24-28), we have the critical frequency ratio,longitudinal to transverse:  

The above equations f o r  n = I and pi = . 1423KAi may be solved graphically, if we 
write these equations in the forms  

A: = ( I - aaii - '12) ( I - aaii)/. 0405K2 . 

Also, f rom equation ( 13) 

Ai = adz( 1 - cos  rl-ro,'! ( r l T  ) . 
0 
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The procedure is as follows: 

( i) Plot A, v s  r i  from equations (28) and ( 28a), respectively, by using K 
as a parameter and note that aa,, = . i2i3K; a and T~ are fixed. 

( 2 )  The intersections of these two curves give the upper and lower bounds 
It is shown as the upper branch in of ri of the instability region f o r  the given K. 

Figure 3. 

( 3) Plot A t  v s  ri from equation ( 28b) and the square of equation (28) 
for  git*cn K, ;r, and T ~ .  

(4) The intersection of these two curves gives the upper bound of the 
instability region of the lower branch shown in Figure 3.  

(5 )  Similarly, equations (28c) and (28)  will yield the lower bound of 
the instability region of the lower branch. 

It is interesting to note that the thrust  buildup time to(= ~ ~ / s 1 1 )  plays an 
important role in determining dynamic elastic stability of a space r o k e t .  

Dynamic Buckling Thrust and Frequency of Vibration 

Let  us re turn to equation (25) and disregard the cos O 1 t  t e rm in the 
equation; in other words,  we  wi l l  neglect the effect of the longitudinal stress 
wave; thus, w e  obtain 

Therefore,  the fundamental frequency of t ransverse vibration of a uniform beam 
under the influence of a thrust  force is 

The crit ical  dynamic thrust  P :I: is the force that reduces the frequency of 
vibration to zero. I t  follows immediztely that 

10 
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For a free-free uniform beam, KYk = 8.23, and fo r  beams with other end condi- 
tions, Kfc can be obtained easily with the aid of References 4 and 5. 
€or various end conditions are given in Tables I and 11. 

Formulas 

The Static Approach. -The critical thrust  of a bar  based on thestatic 
approach is actually the buckling inertia load caused by acceleration. 
that the thrust force is increased gradually such that no t ransverse vibration is 
induced. 
because under the given end conditions an equilibrium configuration of the beam can- 
not be attained without having t ransverse vibration. The c r i t i ca l  values of thrust  
which causes inertia buckling of a clamped-free beam and a supported-supported 
beam, obtained from Reference 6 ,  are .794 and 1.88 t imes T?EI/L', respectively. 

It is assumed 

In some cases, this approach fails to yield the c r i t i ca l  inertia load, 

Elastic Stability Under Aerodynamic Load 

It is a well known phenomenon that, as air flow passing around an elastic,  
slender body, energy is emitted from the body into the surrounding medium when 
the velocity of propagation of t ransverse wave of the body is greater than the 
velocity of the flow; and conversely, the energy is absorbed by the body from the 
medium. In the la t te r  case the energy absorbed by the body has a tendency to 
increase its magnitude of vibration. 
motion o r  flutter. Our main concern here  is not the panel flutter of the skin of 
the shell structure;  we a r e  interested in estimating how the high speed aero- 
dynamic flow affects the cri t ical  thrust. To this end, are shall avoid the compli- 
cated three-dimensional problem of an elastic shell in a potential flow such as 
that treated in Reference 1 (pp. 218 - 230). Our analysis nil1 be made on the 
following assumptions: 

This is commonly called self-excited 

( 1) The deformation of the c r o s s  section of the hollow cylindrical bar  is 
negligible; therefore, we may take the radial deformation of the rocket shell as 
the product of the t ransverse deflection of the free-free,  uniform ba r  and cos 0 
with 0 measured from the plane of t ransverse motion around the c r o s s  section. 

w ( x ,  0 ,  t) = W(X,t) c o s  0 . 
r 

( 2) The ba r  is sufficiently long in comparison with i ts  diameter so  that 
the end effect may be ignored. 

( 3) The linear approximation theory may be applied to determine the 
aerodynamic force exerted on the oscillating bar  a t  supersonic speed. 
denote U as the speed of the rocket o r  the velocity of air flow relative to the 
rocket, and by using the coordinates shown in Figure 4,  we may write the 
linearized aerodynamic p res su re  in the form: 

Let us 
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Then the dynamic load p e r  unit length, q (  x, t) , in equation ( 1) is 

r / 2  
g = - 2  J p ~ o ~ e m e = - -  

-T/2 

N 

FIGURE 4. COORDINATE SYSTEM 

Stability Criteria. -Now, we proceed to solve equation ( 1) in which 
q ( x ,  t) is substituted from equation ( 3 3 )  and N ( s ,  t) is substituted froiii equation 
( 15) by neglecting the longitudinal stres wave. Similarly, applying Galerkin's 
method, we obtain, by retaining only the first two t e rms ,  

where Q 1  and s1, are the first and second natural frequencies of free vibration, 
La and ts are the aerodynamic and structural damping factors,  respectively, 

15 



TYRLPw m P w M  
( M  = Mach No. = U/cm). (35)  mLQ: and /3 = 

2mLc R, ’ ta = 
00 

Note that the integration formula given by Reference 5 has been used to obtain 
the last  expression, from which we calculate 

bll = 0 b22 = 0 bE = -9 .212  b2l = 0. 1596 

Here, we point out that the rigid body modes have no effect on the elastic 
stability of a free-free bar. The proof is 
motion f and rotation f to equation (20)  R e 

very simple. 
to give 

Let us add the rigid body 

w ( x ,  t) = fR( t )  + x f p  + V i ( X ) f i ( t )  

i = l  

Substituting the above equation, with 

N(x,  t) = -  P ( 1  - x/L) 
0 

and q ( x ,  t) , given by equation ( 3 3 ) ,  into equation ( 1) and then multiplying the 
resultant equation by v k ( x ) ,  we  integrate it from x = 0 to x = L. 
integrals given by Reference 5, 

Using the 

I, L 
and v ( x )  d x =  0 , 

k 
[ xv ( x )  d x = O  

0 
k 

0 

w e  note immediately that the equations obtained are identical with equation ( 3 4 ) .  

Substituting f i  = BieQ and f2 = BzeQ into equation ( 34) and equating the 
determinant of the coefficients of B1 and B2 to zero yields the characterist ic 
equation 



where 

( c )  

We recall that the Routh-Hurwitz stability criteria are as follows: 

a1 a3 0 

a a, a4 > 0 o r  A a 2  - BCY + C > 0 ,  
0 

0 a1 a3 

where 

A = (ail + 'Ea2,)/4T - (aiia2z - a12a2i) = 4. 1512 

B = -  - [ail++,- ta&2i+a2ibi,)Pl 
I 

2T 

= I. 9263( 8.5985 + €2) - (9.194 - 5. 87638) 
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- ( I  + 14. 7028P2) 

Condition ( a )  is satisfied i f  the damping factor is positive; and ( d )  is satisfied 
for  all values of a ;  ( b )  requires that a::: be smaller  than . 294 o r  K+ < 14. 9; 
and ( e )  can be used t~ determine thc cri t ical  thrust  fer a given ,R. 

Frequency of Transverse Vibration. -Let us s e t  the damping factor equal 
to zero (a i  = a3 = 0) in equation (37) from which we may readily solve for  the 
frequency of vibration by using the thrust  P or  the aerodynamic factor P as a 
parameter.  A one-term approximation without taking into account aerodynamic 
effect i s  given by equation ( 30). Note that the coalescence point of these curves,  
by definition, is the limit of stability of motion. 

0 

NUMERICAI, EXAMPLE 

Let u s  consider a large rocket with the following structural  data: 

R = 4.572 m ( 1 5  ft) , 

L = 106.68 m (350 f t )  , 

Weight = mgL = 2.72 X IO6 kg ( 6  X IO6 lb) , 

E1 = 1.4632 x I O i o  m2-kg ( 5 0  x 10” in2-lb), 

from which we calculate 

The values of 2; and P given by equation (35)  are given in Table 111. a 

By using equation (40)  the critical thrust  versus  the flight speed of the 
rocket is plotted in Figure 5 with flight altitudes a t  3048 m ( 10,000 f t )  , 6096 m 
(20 ,000  ft) , and 9164 m (30,000 ft) , respectively. These curves indicate that 
structural  damping has little effect on the critical thrust. 



TABLE m. VALUES OF t; AND p a 

~ 

a Altitude 5 

~ 

P 

3048 m ( 10,000 ft) 

6096 m (20,000 ft)  

9164 m (30 ,000  ft) 

15,240 m (50,000 ft) 

30,480 m ( 100,000 f t )  

42,672 m ( 140,000 f t )  

.0192 .0236 M 

.0137 ,0158 M 

.0090 .0102 M 

.0036 .00394 M 

.00033 .00036 M 

.000034 .000068 M 

The variation of vibration frequency, which is represented by equation 
(37 )  with ai = a3 = 0 ,  is illustrated by Figures 6 and 7. In Figure 6 the frequency 
ratio,  frequency with thrust  to frequency without thrust, is plotted against P 
with P as a parameter ,  while in Figure 7 it is plotted against /? with Po as a 
parameter.  Note  that the one-term approximation given by equation (30 )  is also 
shown in Figure 6. For a given rocket the value of ,B is proportional to Mach 
number at a constant altitude. This is also shown in the figures. 

0 

CONCLUSIONS 

(1)  It has  been proven that the rigid body modes do not affect the 
elastic stability of a uniform ba r  with free-free ends. 

(2 )  From a structural  design point of view, the critical thrus t  is more  
than four t imes greater when the rocket is treated as free-free with an axial 
th rus t  than when the rocket is treated as supported-supported with a vertical ,  
conservative force. 

(3 )  Figure 3 indicates that the region of elastic instability decreases  
with the thrust buildup time of the rocket. 

( 4 )  The crit ical  thrust decreases rapidly at high supersonic speed and 
low flight altitude. 
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( 5 )  Structural damping does not have significant effect on the critical 
thrust. 

( 6 )  One must keep in mind that the aerodynamic load given by equation 
( 3 3 )  is a very crude approximation, but that it leads to the simplest  formulation 
to serve the purpose of our study. 
based on more realistic assumptions. Discussion of these approaches is beyond 
the scope of this report. 

Certainly, one can find many other approaches 
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FIGURE 6. VARIATION O F  FREQUENCY VS THRUST 
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